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Phosphonates are an important class of compounds by virtue 
of their similarity to phosphates, and the preparation and 
biochemical investigation of a number of new phosphonates have 
been reported.1 However, reports on the fluorinated analogues 
of these compounds are scarce although it is well established that 
incorporation of fluorine into biologically significant compounds 
imparts enhanced activity and stability compared to the non-
fluorinated counterparts.2 This dearth of fluorinated analogues 
is due to the lack of useful synthetic procedures, since conventional 
methods of synthesis of phosphonates cannot usually be applied 
to fluorinated cases. 

On the basis of both electronic and steric considerations, it had 
been proposed by Blackburn and co-workers3 that replacement 
of a bridging oxygen in a pyrophosphate or the methylene group 
in a methane diphosphonate by a difluoromethylene group is 
isosteric and isopolar and the fluorinated analogue should exhibit 
chemical and physical properties similar to those of the cor
responding phosphonates. In fact, fluorinated phosphonates were 
found to be excellent mimics of phosphate esters; for example, 
Danzin and co-workers have demonstrated the superiority of 
difluorophosphonate,9-(5,5-difluoro-5-phosphonopentyl)guanine 
as a purine nucleoside phosphorylase inhibitor.4 Therefore, there 
is considerable current interest in the preparation of the fluorinated 
phosphonates and exploration of their potential for biological 
activity.5 In addition to their potential as phosphate mimics, 
fluorinated phosphonates have also been investigated as fuel cell 
electrolytes6 as well as chelating agents.7 A recent spate of efforts 
in this area has resulted in the syntheses of new fluorinated acids 
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(HO)2P(O)CF2P(O)(OH)2,' (HO)2P(O)(CFj)nP(O)(OH)2 (« 
= 2,3, and 4),9 (HO)2P(O)CF2CO2H,10 (HO)2P(O)CF2SO3H,1' 
and (HO)2P(O)CF=CFP(O)(OH)2.
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The preparation of a,a-difluorinated phosphonates, (RO)2P-
(O)CF2H and (RO)2P(O)CF2Br (R = Et, /-C3H7), has been 
reported13 (eqs 1 and 2). Although these reactions appear to be 

O 

(RO)2PONaH-CF2Ha •» (RO)2PCF2H +NaQ (1) 

(50%) 

O 

(RO)3P + CF2Br2 . . (RO)2PCF2Br +RBr (2) 

(95%) 

SN2 type displacements, they proceed via formation and subse
quent trapping of difluorocarbene.14 Consequently, these trans
formations are specific for difluoromethyl analogues and cannot 
be extended to the preparation of (/8-halotetrafluoroethyl)-
phosphonates. Currently, to our knowledge, there exists no 
method for the preparation of phosphonates (RO)2P(CT)CF2CF2X 
(R = alkyl; X = Cl, Br, I), and our continued quest in this area 
prompted us to explore different synthetic routes for these 
compounds. Herein, we report the synthesis of new phosphonates, 
(RO)2P(O)CF2CF2X, in good yields from commercially available 
starting materials, and a unique photochemical reaction of BrCF2-
CF2I. 

Our initial attempts for the synthesis of dialkyl (0-halotet-
rafluoroethyl)phosphonate was via Kato-Yamabe15 thermally 
induced radical reaction. Thus, when a mixture of ICF2CF2I, 
(EtO)2POP(OEt)2, and di-terf-butyl peroxide in CF2ClCFCl2 
was heated at 125-130 0C, under degassed conditions for 3.5 h, 
only F2C=CF2 was observed; BrCF2CF2Br did not react at all 
under similar experimental conditions. However, when BrCF2-
CF2I was employed, formation of the corresponding phosphonite, 
[(EtO)2PCF2CF2Br], was observed (eq 3). Though this inter-

Me3COOCMe3 

CF2ClCFCl2 
(EtO)2POP(OEt)2 + XCF2CF2I 1 2 5 . i 3 o°c ' ((EtO)2PCF2CF2X] 

Me3i.u 
MeOH 

O 
H 

(EtO)2PCF2CF2X (3) 
52%(X= Cl) 
62%(X= Br) 

mediate was not isolated, its characterization was accomplished 
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by 19F and 31P(1H) NMR analyses.16 The resultant [(EtO)2-
PCF2CF2Br] upon oxidation with Me3COOH in MeOH readily 
afforded the target phosphonate, (EtO)2P(O)CF2CF2Br,17 in 62% 
isolated yield. Similarly, the corresponding chloro derivative was 
obtained from ClCF2CF2I, in 52% yield (eq 3). 

As an alternative to the thermally induced radical reaction, we 
focused our attention on a photochemical approach. Previously, 
it was reported that UV irradiation of a mixture of triethyl 
phosphite and CF3I or C6F5I afforded CF3P(O)(OR)2 or C6F5P-
(O)(OR)2 (R = C2H5), respectively.18 We chose to explore the 
photochemical reaction of ICF2CF2X (X = Br, I) and trialkyl 
phosphite. Thus, when a degassed mixture of ICF2CF2I and 
triethyl or triisopropyl phosphite was subjected to UV irradiation 
(254 nm, Rayonet Photochemical apparatus) for 2-3.5 h at 
ambient temperature, only the formation of C2F4 was observed. 
However, when BrCF2CF2I was employed, an interesting and 
unique transformation resulted; (RO)2P(O)CF2CF2I

17 (R = Et 
or J-Pr) was formed (42-48% isolated yields) (eq 4) with no 
detectable amount of the bromo derivative, (RO)2P(O)CF2CF2-
Br!" We found the yield Of(RO)2P(O)CF2CF2I optimum when 
the ratio of trialkyl phosphite to BrCF2CF2I was 2:1. 

O 
ht> (254 nm) K 

2 (RO)3P + 1 BrCF2CF2I i- (RO)2PCF2CF2I (4) 
(R = 1-C3H, or C2H5)

 2" 3 , 5 h 42-48% 

Byproducts observed from the above reaction were EtBr, EtI, 
BrCF2CF2H, and unreacted BrCF2CF2I,

20 besides (RO)2P(O)-
CF2CF2H (5-10%). Irradiation for a longer time did not improve 
the yield of (RO)2P(O)CF2CF2I.

21 The reaction of XCF2CF2I 
(X = Br or I) with (RO)3P (R = 1-C3H7 or C2H5) (at 100 0C, 
under degassed conditions) or with (EtO)2PONa+ were also 
investigated; in both cases, neither (RO)2P(O)CF2CF2I nor 
(RO)2P(O)CF2CF2Br was observed, but F2C=CF2.

22 Also, 
triphenyl phosphite, a poor nucleophilic substrate, on irradiation 
with BrCF2CF2I afforded F2C=CF2 as the only fluorine-

(16) (EtO)2PCF2CF2Cl: "F (CDCl3) i -67.3 (dt, 2F), -122.6 (dt, 2F) 
ppm; 31P(1H) 8 144.8 (tt) ppm (VPF = 80 Hz, 3/PF = 17 Hz, VFF = 10 Hz). 
(EtO)2PCF2CF2Br: 19F (CDCl3) « -61.3 (dt, 2F)1-119.6 (dt, 2F) ppm; 31P-
(1H)« 145.6 (tt) ppm (VPF = 82 Hz, 3Jn = 19 Hz, VFF = 10 Hz). The 31P(1HJ 
and "F S values are consistent with the previously reported values for 
F-alkylphosphonites. •5 
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Scheme 1 

(RO)3P + BrCF2CF2I
 1 ^ - (RO)3P

+" + BrCF2CF2I"' 
I I I 

-. - l" . (RO)3P . + 

BrCF2CF2I » BrCF2CF2 .- BrCF2CF2 + (RO)3P ' 

(RO)3P+ ' + f/Br" ». (RO)2PO' + RI/RBr B ' + 0 ^ 4 

(RO)2PO" + F2C=CF2 »(RO)2P(O)CF2CF2' 

BrCF2CF2I 

(RO)2P(O)CF2CF2I + BrCF2CF2' 

containing product. Our proposed mechanism for this remarkable 
transformation is illustrated in Scheme 1. 

Photoinduced electron transfer between the phosphite and 
I -bromo 2-iodotetrafluoroethane produces the radical cation, I,23*24 

and radical anion, II, respectively. A second electron transfer to 
II affords the unstable BrCF2CF2

-, which eliminates Br to 
generate F2C=CF2. Phosphoryl radical results on dealkylation 
of I by either I' or Br. Subsequent addition of phosphoryl radical 
to the tetrafluoroethylene25 results in the formation of (RO)2-
P(O)CF2CF2*, which in the last step abstracts an iodine atom 
from the starting ethane to afford (RO) 2P(0)CF2CF2I and BrCF2-
CF2*; the latter continues the chain process. 

In summary, we have demonstrated the facile preparation of 
new fluorinated phosphonates, (RO)2P(O)CF2CF2X (X = Cl, 
Br, or I), for thefirst time from readily available precursors. We 
anticipate that ready accessibility of these interesting phospho
nates makes them attractive targets for biochemical studies and 
precursors for fuel cell electrolytes. 
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